
Big	Data	and	Visualization
Friday,	August	24,	2018	11:57	AM

Analyze	weather	data	using	Azure	Machine	Learning,	build
a	data	pipeline	using	Azure	Data	Factory,	summarize	it	in
HDInsight	Spark,	and	visualize	it	using	Power	BI.

In	this	workshop,	attendees	will	build	an	end-to-end	solution	to	predict	flight	delays	taking	into
account	the	weather	forecast	using	Power	BI,	Azure	HDInsight	Spark,	an	Azure	Machine
Learning.

What	You	Will	Learn
Azure	Data	Factory
Azure	HDInsight	Spark
Azure	Machine	Learning
Power	BI	Desktop
Advanced	Analytics

Ideal	Audience
CIOs
VPs	and	Directors	of	Business	Intelligence
IT	Managers
Data	Architects	and	DBAs
Data	Analysts	and	Data	Scientists

Abstract	and	learning	objectives
In	this	workshop,	you	will	build	a	complete	Azure	Machine	Learning	(ML)	model	for	predicting	if	an
upcoming	flight	will	experience	delays,	based	on	flight	data	and	weather	conditions.	In	addition,	you
will	learn	to:

Develop	a	data	factory	pipeline	for	data	movement
Analyze	data	using	Spark	on	HDInsight
Build	and	operationalize	a	Machine	Learning	model	for	predictions
Visualize	Big	Data	and	predictions	using	Power	BI	Desktop

This	hands-on	lab	is	designed	to	provide	exposure	to	many	of	Microsoft’s	transformative	line	of
business	applications	built	using	Microsoft	big	data	and	advanced	analytics.	The	goal	is	to	show	an
end-to-end	solution,	leveraging	many	of	these	technologies,	but	not	necessarily	doing	work	in	every
component	possible.	The	lab	architecture	is	below	and	includes:

Azure	Machine	Learning	(Azure	ML)
Azure	Data	Factory	(ADF)
Azure	Storage
HDInsight	Spark
Power	BI	Desktop
Azure	App	Service

Overview
AdventureWorks	Travel	(AWT)	provides	concierge	services	for	business	travelers.	In	an	increasingly
crowded	market,	they	are	always	looking	for	ways	to	differentiate	themselves,	and	provide	added
value	to	their	corporate	customers.	They	are	looking	to	pilot	a	web	app	that	their	internal	customer
service	agents	can	use	to	provide	additional	information	useful	to	the	traveler	during	the	flight
booking	process.	They	want	to	enable	their	agents	to	enter	in	the	flight	information	and	produce	a
prediction	as	to	whether	the	departing	flight	will	encounter	a	15-minute	or	longer	delay,	considering
the	weather	forecasted	for	the	departure	hour.	In	this	hands-on	lab,	attendees	will	build	an	end-to-
end	solution	to	predict	flight	delays,	accounting	for	the	weather	forecast.

Solution	Architecture
Below	is	a	diagram	of	the	solution	architecture	you	will	build	in	this	lab.	Please	study	this	carefully	so
you	understand	the	whole	of	the	solution	as	you	are	working	on	the	various	components.

Overview

The	solution	begins	with	loading	their	historical	data	into	blob	storage	using	Azure	Data	Factory
(ADF).	By	setting	up	a	pipeline	containing	a	copy	activity	configured	to	copy	time	partitioned	source
data,	they	could	pull	all	their	historical	information,	as	well	as	ingest	any	future	data,	into	Azure	blob
storage	through	a	scheduled,	and	continuously	running	pipeline.	Because	their	historical	data	is
stored	on-premises,	AWT	would	need	to	install	and	configure	an	Azure	Data	Factory	Integration
Runtime	(formerly	known	as	a	Data	Management	Gateway).	Azure	Machine	Learning	(Azure	ML)
would	be	used	to	develop	a	two-class	classification	machine	learning	model,	which	would	then	be
operationalized	as	a	Predictive	Web	Service	using	ML	Studio.	After	operationalizing	the	ML	model,	a
second	ADF	pipeline,	using	a	Linked	Service	pointing	to	Azure	ML’s	Batch	Execution	API	and	an
AzureMLBatchExecution	activity,	would	be	used	to	apply	the	operational	model	to	data	as	it	is	moved
to	the	proper	location	in	Azure	storage.	The	scored	data	in	Azure	storage	can	be	explored	and
prepared	using	Spark	SQL	on	HDInsight,	and	the	results	visualized	using	a	map	visualization	in	Power
BI.

Time	Estimate:	5.0	hours

Setup	Requirements
A	corporate	email	address	(e.g.,	your	@microsoft.com	email)
Microsoft	Azure	Subscription	must	be	pay-as-you-go	or	MSDN

Additional	Requirements
You	will	need	a	subscription	to	Microsoft	Azure.	Please	see	the	next	page	for	how	to	create	a	trial
subscription.

Requirements

Azure_Registration.html

Azure
We	need	an	active	Azure	subscription	in	order	to	perform	this	workshop.	There	are	a	few	ways	to
accomplish	this.	If	you	already	have	an	active	Azure	subscription,	you	can	skip	the	remainder	of	this
page.	Otherwise,	you'll	either	need	to	use	an	Azure	Pass	or	create	a	trial	account.	The	instructions	for
both	are	below.

Azure	Pass
If	you've	been	provided	with	a	voucher,	formally	known	as	an	Azure	Pass,	then	you	can	use	that	to
create	a	subscription.	In	order	to	use	the	Azure	Pass,	direct	your	browser	to
https://www.microsoftazurepass.com	and,	following	the	prompts,	use	the	code	provided	to	create
your	subscription.

Trial	Subscription
Direct	your	browser	to	https://azure.microsoft.com/en-us/free/	and	begin	by	clicking	on	the	green
button	that	reads	Start	free.

1.	 In	the	first	section,	complete	the	form	in	its	entirety.	Make	sure	you	use	your	real	email
address	for	the	important	notifications.

2.	 In	the	second	section,	enter	a	real	mobile	phone	number	to	receive	a	text	verification
number.	Click	send	message	and	re-type	the	received	code.

3.	 Enter	a	valid	credit	card	number.	NOTE:	You	will	not	be	charged.	This	is	for	verification	of
identity	only	in	order	to	comply	with	federal	regulations.	Your	account	statement	may	see	a
temporary	hold	of	$1.00	from	Microsoft,	but,	again,	this	is	for	verification	only	and	will	"fall
off"	your	account	within	2-3	banking	days.

4.	 Agree	to	Microsoft's	Terms	and	Conditions	and	click	Sign	Up.

This	may	take	a	minute	or	two,	but	you	should	see	a	welcome	screen	informing	you	that	your
subscription	is	ready.	The	Azure	subscription	is	good	for	up	to	$200	of	resources	for	30	days.	After	30
days,	your	subscription	(and	resources)	will	be	suspended	unless	you	convert	your	trial	subscription
to	a	paid	one.	And,	should	you	choose	to	do	so,	you	can	elect	to	use	a	different	credit	card	than	the
one	you	just	entered.

Congratulations!	You've	now	created	an	Azure	tenant	and	subscription!

Azure	Registration

https://www.microsoftazurepass.com/
https://azure.microsoft.com/en-us/free/

Exercise	0:	Before	the	workshop
Duration:	45	mins

Synopsis:	In	this	exercise,	you	will	set	up	your	environment	for	use	in	the	rest	of	the	hands-on	lab.

You	should	follow	all	the	steps	provided	in	this	section	to	prepare	your	environment
before	attending	the	hands-on	lab.

Task	1:	Deploy	HDInsight	cluster,	Azure	ML,	and	Storage	Accounts	to
Azure

1.	 Click	the	Deploy	to	Azure	link	below,	and	you	will	be	taken	to	the	Azure	portal,	and
presented	with	a	form	for	a	new	custom	deployment	(which	uses	an	Azure	Resource
Management	(ARM)	template	from	a	GitHub	repository).	You	will	be	presented	with	a	blade	to
provide	some	custom	parameters	as	show	in	the	screenshot	below.

Deploy	to	Azure

2.	 In	the	Custom	deployment	blade	that	appears,	enter	the	following	values:

Subscription:	Select	your	subscription

Resource	group:	Use	and	existing	Resource	group,	or	create	a	new	one	by	entering	a
unique	name,	such	as	“bigdatalab-[your	intials	or	first	name]”.

Location:	Select	a	location	for	the	Resource	group.	Recommend	using	East	US,	East
US	2,	West	Central	US,	or	West	US	2,	as	some	resources,	such	as	Data	Factory,	are
only	available	in	those	regions.

App	name:	Enter	a	unique	name,	such	as	your	initials	or	first	name.	This	value	must
be	between	3	and	10	characters	long,	and	should	not	contain	any	special	characters.
Note	the	name,	as	you	will	need	to	use	it	in	your	Lab	VM	deployment	in	Task	3	as
well.

Cluster	Login	User	Name:	Enter	a	name,	or	accept	the	default.	Note	all	references	to
this	in	the	lab	use	the	default	user	name,	demouser,	so	if	you	change	it,	please	note
it	for	future	reference	throughout	the	lab.

Setup

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FZoinerTejada%2Fmcw-big-data-and-visualization%2Fmaster%2FTemplates%2FTemplate-BigDataLab.json

Cluster	Login	Password:	Enter	a	password,	or	accept	the	default.	Note	all	references
to	this	in	the	lab	use	the	default	password,	Password.1!!,	so	if	you	change	it,	please
note	it	for	future	reference	throughout	the	lab.

Check	the	box	to	agree	to	the	terms.

Select	Purchase.

3.	 The	deployment	will	take	about	15	minutes	to	complete.

4.	 Wait	for	the	deployment	to	complete	before	attempting	to	deploy	the	Lab	Virtual	Machine	in
Task	3,	as	it	depends	on	the	Virtual	Network	created	by	this	deployment.	In	the	meantime,
you	can	move	on	to	the	next	task,	Task	2,	while	this	deployment	is	ongoing.

Task	2:	Register	for	a	trial	API	account	at	WeatherUnderground.com
To	retrieve	the	10-day	hourly	weather	forecast,	you	will	use	an	API	from	WeatherUnderground.com.
There	is	a	free	developer	version	that	provides	you	access	to	the	API	you	need	for	this	hands-on	lab.

1.	 Navigate	to	http://www.wunderground.com/weather/api/.

2.	 Select	Explore	My	Options.

3.	 On	the	Get	Your	API	Key	page,	select	Anvil	Plan.

4.	 Scroll	down	until	you	see	the	area	titled	How	much	will	you	use	our	service?	Ensure
Developer	is	selected.

5.	 Select	Purchase	Key.

6.	 Complete	the	Create	an	Account	form	by	providing	your	email	address	and	a	password,	and
agreeing	to	the	terms.

7.	 Select	Sign	up	for	free.

8.	 In	a	few	moments	you	should	receive	a	confirmation	email	at	the	email	address	you
provided.	Select	the	Validate	Your	Email	link	found	within	the	email.

9.	 Once	you	have	validated	your	email,	go	back	to	the	Get	Your	API	Key	page,	re-select	Anvil
and	select	Purchase	Key.

10.	 Complete	the	brief	contact	form.	When	answering	where	will	the	API	be	used,	select
Website.	For	Will	the	API	be	used	for	commercial	use,	select	No.	Select	Purchase	Key.

11.	 You	should	be	taken	to	a	page	that	displays	your	key,	similar	to	the	following:

12.	 Take	note	of	your	API	Key.	It	is	available	from	the	text	box	labeled	Key	ID.

13.	 To	verify	that	your	API	Key	is	working,	modify	the	following	URL	to	include	your	API	Key:
http://api.wunderground.com/api//hourly10day/q/SEATAC.json.

14.	 Open	your	modified	link	in	a	browser,	you	should	get	a	JSON	result	showing	the	10-day,
hourly	weather	forecast	for	the	Seattle-Tacoma	International	Airport

Task	3:	Deploy	Lab	Virtual	Machine	(Lab	VM)	to	Azure
1.	 Click	the	Deploy	to	Azure	link	below,	and	you	will	be	taken	to	the	Azure	portal,	and

presented	with	a	form	for	a	new	custom	deployment	(which	uses	an	ARM	template	from	a
GitHub	repository).	You	will	be	presented	with	a	blade	to	provide	some	custom	parameters	as
show	in	the	screenshot	below.

Deploy	to	Azure

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FZoinerTejada%2Fmcw-big-data-and-visualization%2Fmaster%2FTemplates%2FTemplate-BigDataLabVM.json

2.	 In	the	Custom	deployment	blade	that	appears,	enter	the	following	values:

Subscription:	Select	your	subscription

Resource	group:	Choose	Use	Existing,	and	select	the	same	resource	group	you	used
when	deploying	your	HDInsight	cluster	and	Azure	ML	workspace,	above.

Location:	The	location	should	be	automatically	selected	to	be	the	same	as	your
Resource	Group.

App	name:	IMPORTANT:	You	must	enter	the	same	App	name	you	used	in	the
deployment	above	in	Task	1.

VM	User	Name:	Enter	a	name,	or	accept	the	default.	Note	all	references	to	this	in	the
lab	use	the	default	user	name,	demouser,	so	if	you	change	it,	please	note	it	for
future	reference	throughout	the	lab.

VM	Password:	Enter	a	password,	or	accept	the	default.	Note	all	references	to	this	in
the	lab	use	the	default	password,	Password.1!!,	so	if	you	change	it,	please	not	it	for
future	reference	throughout	the	lab.

Check	the	box	to	agree	to	the	terms.

Select	Purchase.

3.	 The	deployment	will	take	about	10	minutes	to	complete.

Task	4:	Install	Power	BI	Desktop	on	the	Lab	VM
1.	 Connect	to	the	Lab	VM.	(If	you	are	already	connected	to	your	Lab	VM,	skip	to	Step	7.

2.	 From	the	left	side	menu	in	the	Azure	portal,	click	on	Resource	groups,	then	enter	your
resource	group	name	into	the	filter	box,	and	select	it	from	the	list.

3.	 Next,	select	your	lab	virtual	machine	from	the	list.

4.	 On	your	Lab	VM	blade,	select	Connect	from	the	top	menu.

5.	 Download	and	open	the	RDP	file.

6.	 Select	Connect,	and	enter	the	following	credentials	(or	the	non-default	credentials	if	you
changed	them):

User	name:	demouser
Password:	Password.1!!

7.	 In	a	web	browser	on	the	Lab	VM	navigate	to	the	Power	BI	Desktop	download	page
(https://powerbi.microsoft.com/en-us/desktop/).

8.	 Select	the	Download	Free	link	in	the	middle	of	the	page

9.	 Run	the	installer.

10.	 Select	Next	on	the	welcome	screen.

11.	 Accept	the	license	agreement,	and	select	Next.

12.	 Leave	the	default	destination	folder,	and	select	Next.

13.	 Make	sure	the	Create	a	desktop	shortcut	box	is	checked,	and	select	Install.

14.	 Uncheck	Launch	Microsoft	Power	BI	Desktop,	and	select	Finish.

Task	5:	Install	an	SSH	client
In	this	task,	you	will	download,	and	install	the	Git	Bash	SSH	client.	This	will	be	used	to	interact	with
the	HDInsight	cluster.

1.	 On	your	Lab	VM,	open	a	browser,	and	navigate	to	https://git-scm.com/downloads	to
download	Git	Bash.

2.	 Select	the	Download	2.xx.x	for	Windows	button.

3.	 Run	the	downloaded	installer,	selecting	Next	on	each	screen	to	accept	the	defaults.

4.	 On	the	last	screen,	select	Install	to	complete	the	installation.

5.	 When	the	install	is	complete,	uncheck	View	Release	Notes,	and	select	Finish.

Exercise	1:	Build	a	Machine	Learning	Model
Duration:	60	minutes

Synopsis:	In	this	exercise,	attendees	will	implement	a	classification	experiment.	They	will	load	the
training	data	from	their	local	machine	into	a	dataset.	Then,	they	will	explore	the	data	to	identify	the
primary	components	they	should	use	for	prediction,	and	use	two	different	algorithms	for	predicting
the	classification.	They	will	evaluate	the	performance	of	both	and	algorithms	choose	the	algorithm
that	performs	best.	The	model	selected	will	be	exposed	as	a	web	service	that	is	integrated	with	the
sample	web	app.

Task	1:	Navigate	to	Machine	Learning	Studio
1.	 In	a	browser,	go	to	the	Azure	portal	(https://portal.azure.com),	and	navigate	to	your	Machine

Learning	Studio	workspace	under	the	Resource	Group	you	created	when	completing	the
prerequisites	for	this	hands-on	lab.	

2.	 On	the	Machine	Learning	Studio	workspace	blade,	select	Launch	Machine	Learning
Studio.	

3.	 Sign	in,	if	prompted.

Build	a	ML	Model

4.	 If	you	have	multiple	Azure	ML	workspaces,	choose	the	one	you	created	for	this	hands-on	lab
from	the	drop-down	menu	near	the	top	right	of	Azure	Machine	Learning	Studio.

Task	2:	Upload	the	Sample	Datasets
1.	 Before	you	begin	creating	a	machine	learning	experiment,	there	are	three	datasets	you	need

to	load.

2.	 Download	the	three	CSV	sample	datasets	from	here:	http://bit.ly/2wGAqrl	(If	you	get	an	error,
or	the	page	won’t	open,	try	pasting	the	URL	into	a	new	browser	window	and	verify	the	case
sensitive	URL	is	exactly	as	shown).

3.	 Extract	the	ZIP	and	verify	you	have	the	following	files:

FlightDelaysWithAirportCodes.csv
FlightWeatherWithAirportCodes.csv
AirportCodeLocationLookupClean.csv

4.	 In	the	Machine	Learning	Studio	browser	window,	select	+	NEW	at	the	bottom	left.

5.	 Select	Dataset	under	New,	and	then	select	From	Local	File.

6.	 In	the	dialog	that	appears,	select	Choose	File,	browse	to	the
FlightDelaysWithAirportCodes.csv	file	you	downloaded	in	the	previous	step,	and	select	Open.

7.	 Change	the	name	of	the	dataset	to	"FlightDelaysWithAirportCodes,"	and	select	the
checkmark	to	upload	the	data	into	a	new	dataset.

8.	 Repeat	the	previous	step	for	the	FlightWeatherWithAirportCode.csv	and
AirportCodeLocationsClean.csv	files,	setting	the	name	for	each	dataset	in	a	similar	fashion.

Task	3:	Start	a	new	experiment
1.	 Select	+	NEW	in	the	command	bar	at	the	bottom	left	of	the	page,	and	select	Experiment.

2.	 From	the	options	that	appear,	select	Blank	Experiment.

3.	 Give	your	new	experiment	a	name,	such	as	AdventureWorks	Travel	by	editing	the
"Experiment	created	on	..."	label	near	the	top	of	the	design	surface.

Task	4:	Prepare	flight	delay	data
1.	 In	the	toolbar	on	the	left,	in	the	Search	experiment	items	box,	type	the	name	of	the

dataset	you	created	with	flight	delay	data	(FlightDelaysWithAirportCodes).	You	should	see	a
component	for	it	listed	under	Saved	Datasets,	My	Datasets.

2.	 Select	and	drag	the	FlightDelaysWithAirportCodes	module	onto	the	design	surface.

3.	 Next,	you	will	explore	the	Flight	delays	datasets	to	understand	what	kind	of	cleanup	(e.g.,
data	munging)	will	be	necessary.

4.	 Hover	over	the	output	port	of	the	FlightDelaysWithAirportCodes	module.

5.	 Right-click	on	the	port	and	select	Visualize.

6.	 A	new	dialog	will	appear	showing	a	maximum	of	100	rows	by	100	columns	sample	of	the
dataset.	You	can	see	at	the	top	that	the	dataset	has	a	total	of	2,719,418	rows	(also	referred
to	as	examples	in	Machine	Learning	literature)	and	has	20	columns	(also	referred	to	as
features).

7.	 Because	all	20	columns	are	displayed,	you	can	scroll	the	grid	horizontally.	Scroll	until	you	see
the	DepDel15	column,	and	select	it	to	view	statistics	about	the	column.	The	DepDel15
column	displays	a	1	when	the	flight	was	delayed	at	least	15	minutes	and	0	if	there	was	no
such	delay.	In	the	model	you	will	construct,	you	will	try	to	predict	the	value	of	this	column	for
future	data.	Notice	in	the	Statistics	panel	that	a	value	of	27444	appears	for	Missing	Values.
This	means	that	27,444	rows	do	not	have	a	value	in	this	column.	Since	this	value	is	very
important	to	our	model,	we	will	need	to	eliminate	any	rows	that	do	not	have	a	value	for	this
column.

8.	 Next,	select	the	CRSDepTime	column.	Our	model	will	approximate	departure	times	to	the
nearest	hour,	but	departure	time	is	captured	as	an	integer.	For	example,	8:37	am	is	captured
as	837.	Therefore,	we	will	need	to	process	the	CRSDepTime	column,	and	round	it	down	to	the
nearest	hour.	To	perform	this	rounding	will	require	two	steps,	first	you	will	need	to	divide	the
value	by	100	(so	that	837	becomes	8.37).	Second,	you	will	round	this	value	down	to	the
nearest	hour	(so	that	8.37	becomes	8.)

9.	 Finally,	we	do	not	need	all	20	columns	present	in	the	FlightDelaysWithAirportCodes	dataset,
so	we	will	need	to	pare	down	the	columns	in	the	dataset	to	the	12.

10.	 Close	the	Visualize	dialog,	and	go	back	to	the	design	surface.

11.	 To	perform	our	data	munging,	we	have	multiple	options,	but	in	this	case,	we’ve	chosen	to	use
an	Execute	R	Script	module,	which	will	perform	the	following	tasks:

Remove	rows	with	missing	values
Generate	a	new	column,	named	“CRSDepHour,”	which	contains	the	rounded	down	value
from	CRSDepTime
Pare	down	columns	to	only	those	needed	for	our	model

12.	 To	add	the	module,	search	for	Execute	R	Script	by	entering	“Execute	R”	into	the	Search
experiment	items	box.

13.	 Drag	this	module	on	to	the	design	surface	beneath	your	FlightDelaysWithAirportCodes
dataset.	Select	the	small	circle	at	the	bottom	of	the	FlightDelaysWithAirportCodes	dataset,
drag	and	release	when	your	mouse	is	over	the	circle	found	in	the	top	left	of	the	Execute	R
Script	module.	These	circles	are	referred	to	as	ports,	and	by	taking	this	action	you	have
connected	the	output	port	of	the	dataset	with	the	input	port	of	the	Execute	R	Script	module,
meaning	data	from	the	dataset	will	flow	along	this	path.

14.	 In	the	Properties	panel	for	Execute	R	Script	module,	select	the	Double	Windows	icon	to
maximize	the	script	editor.

15.	 Replace	the	script	with	the	following	(Press	CTRL+A	to	select	all	then	CTRL+V	to	paste)

#	Import	data	from	the	input	port
ds.flights	<-	maml.mapInputPort(1)

#	Delete	rows	containing	missing	values
ds.flights	<-	na.omit(ds.flights)

#	Round	departure	times	down	to	the	nearest	hour,	and	export	the	result	as	a	ne
w	column	named	"CRSDepHour"
ds.flights[,	"CRSDepHour"]	<-	floor(ds.flights[,	"CRSDepTime"]	/	100)	

#	Trim	the	columns	to	only	those	we	will	use	for	the	predictive	model
ds.flights	=	ds.flights[,	c("OriginAirportCode","OriginLatitude",	"OriginLongit
ude",	"Month",	"DayofMonth",	"CRSDepHour",	"DayOfWeek",	"Carrier",	"DestAirport
Code",	"DestLatitude",	"DestLongitude",	"DepDel15")]

#	Export	the	cleaned	up	data	set
maml.mapOutputPort("ds.flights");

16.	 Select	the	check	mark	in	the	bottom	right	to	save	the	script	(Do	not	worry	if	the	formatting
is	off	before	hitting	the	check	mark.)

17.	 Select	Save	on	the	command	bar	at	the	bottom	to	save	your	in-progress	experiment.

18.	 Select	Run	in	the	command	bar	at	the	bottom	to	run	the	experiment.

19.	 When	the	experiment	is	finished	running,	you	will	see	a	finished	message	in	the	top	right
corner	of	the	design	surface,	and	green	check	marks	over	all	modules	that	ran.

20.	 You	should	run	your	experiment	whenever	you	need	to	update	the	metadata	describing	what
data	is	flowing	through	the	modules,	so	that	newly	added	modules	can	be	aware	of	the
shape	of	your	data	(most	modules	have	dialogs	that	can	suggest	columns,	but	before	they
can	make	suggestions	you	need	to	have	run	your	experiment).

21.	 To	verify	the	results	of	our	R	script,	right-click	the	left	output	port	(Result	Dataset)	of	the
Execute	R	Script	module	and	select	Visualize.

22.	 In	the	dialog	that	appears,	scroll	over	to	DepDel15	and	select	the	column.	In	the	statistics
you	should	see	that	Missing	Values	reads	0.

23.	 Now,	select	the	CRSDepHour	column,	and	verify	that	our	new	column	contains	the	rounded
hour	values	from	our	CRSDepTime	column.

24.	 Finally,	observe	that	we	have	reduced	the	number	of	columns	from	20	to	12.	Close	the
dialog.

25.	 At	this	point	the	Flight	Delay	Data	is	prepared,	and	we	turn	to	preparing	the	historical
weather	data.

Task	5:	Prepare	weather	data
1.	 To	the	right	of	the	FlightDelaysWithAirportCodes	dataset,	add	the
FlightWeatherWithAirportCodes	dataset.

2.	 Right-click	the	output	port	of	the	FlightWeatherWithAirportCodes	dataset	and	select
Visualize.

3.	 Observe	that	this	data	set	has	406,516	rows	and	29	columns.	For	this	model,	we	are	going	to
focus	on	predicting	delays	using	WindSpeed	(in	MPH),	SeaLevelPressure	(in	inches	of	Hg),
and	HourlyPrecip	(in	inches).	We	will	focus	on	preparing	the	data	for	those	features.

4.	 In	the	dialog,	select	the	WindSpeed	column,	and	review	the	statistics.	Observe	that	the
Feature	Type	was	inferred	as	String	and	that	there	are	32	Missing	Values.	Below	that,
examine	the	histogram	to	see	that,	even	though	the	type	was	inferred	as	string,	the	values
are	all	actually	numbers	(e.g.	the	x-axis	values	are	0,	6,	5,	7,	3,	8,	9,	10,	11,	13).	We	will
need	to	ensure	that	we	remove	any	missing	values	and	convert	WindSpeed	to	its	proper	type
as	a	numeric	feature.

5.	 Next,	select	the	SeaLevelPressure	column.	Observe	that	the	Feature	Type	was	inferred	as
String	and	there	are	0	Missing	Values.	Scroll	down	to	the	histogram,	and	observe	that	many
of	the	features	are	of	a	numeric	value	(e.g.,	29.96,	30.01,	etc.),	but	there	are	many	features
with	the	string	value	of	M	for	Missing.	We	will	need	to	replace	this	value	of	"M"	with	a	suitable
numeric	value	so	that	we	can	convert	this	feature	to	be	a	numeric	feature.

6.	 Finally,	examine	the	HourlyPrecip	feature.	Observe	that	it	too	was	inferred	to	have	a
Feature	Type	of	String	and	is	missing	values	for	374,503	rows.	Looking	at	the	histogram,
observe	that	besides	the	numeric	values,	there	is	a	value	T	(for	Trace	amount	of	rain).	We
need	to	replace	T	with	a	suitable	numeric	value	and	covert	this	to	a	numeric	feature.

7.	 To	preform	our	data	cleanup,	we	will	use	a	Python	script,	in	which	we	will	perform	the
following	tasks:

WindSpeed:	Replace	missing	values	with	0.0,	and	“M”	values	with	0.005

HourlyPrecip:	Replace	missing	values	with	0.0,	and	“T”	values	with	0.005

SeaLevelPressure:	Replace	“M”	values	with	29.92	(the	average	pressure)

Convert	WindSpeed,	HourlyPrecip,	and	SeaLevelPressure	to	numeric	columns

Round	“Time”	column	down	to	the	nearest	hour,	and	add	value	to	a	new	column	named
“Hour”

Eliminate	unneeded	columns	from	the	dataset

8.	 Add	an	Execute	Python	Script	module	below	the	FlightWeatherWithAirportCode	module,
and	connect	the	output	port	of	the	FlightWeatherWithAirportCode	module	to	the	first	input
port	of	the	Execute	Python	Script	module.

9.	 In	the	Properties	panel	for	the	Execute	Python	Script:

Set	the	Python	Version	to	Anaconda	4.0/Python	3.5

Select	the	Double	Windows	icon	to	open	the	script	editor.

10.	 Paste	in	the	following	script	into	the	Python	script	window,	and	select	the	checkmark	at	the
bottom	right	of	the	dialog	(press	CTRL+A	to	select	all	then	CTRL+V	to	paste	and	then

immediately	select	the	checkmark	--	don't	worry	if	the	formatting	is	off	before	hitting	the
checkmark).

#	imports	
import	pandas	as	pd
import	math

#	The	entry	point	function	can	contain	up	to	two	input	arguments:
#			Param<dataframe1>:	a	pandas.DataFrame
#			Param<dataframe2>:	a	pandas.DataFrame
def	azureml_main(dataframe1	=	None,	dataframe2	=	None):
				
				#	Round	weather	Time	down	to	the	next	hour,	since	that	is	the	hour	for	whic
h	we	want	to	use	flight	dataframe1
				#	Add	the	rounded	Time	to	a	new	column	named	"Hour,"	and	append	that	column
	to	the	dataframe1
				dataframe1["Hour"]	=	dataframe1["Time"].apply(roundDown)
				
				#	Replace	any	missing	HourlyPrecip	and	WindSpeed	values	with	0.0
				dataframe1["HourlyPrecip"]	=	dataframe1["HourlyPrecip"].fillna('0.0')
				dataframe1["WindSpeed"]	=	dataframe1["WindSpeed"].fillna('0.0')
				
				#	Replace	any	WindSpeed	values	of	"M"	with	0.005
				dataframe1["WindSpeed"]	=	dataframe1['WindSpeed'].replace(['M'],	'0.005')
				
				#	Replace	any	SeaLevelPressure	values	of	"M"	with	29.92	(the	average	pressu
re)
				dataframe1["SeaLevelPressure"]	=	dataframe1['SeaLevelPressure'].replace(['M
'],	'29.92')
				
				#	Replace	any	HourlyPrecip	values	of	"T"	(trace)	with	0.005
				dataframe1["HourlyPrecip"]	=	dataframe1['HourlyPrecip'].replace(['T'],	'0.0
05')
				
				#	Convert	our	WindSpeed,	SeaLevelPressure,	and	HourlyPrecip	columns	to	nume
ric
				dataframe1[['WindSpeed','SeaLevelPressure',	'HourlyPrecip']]	=	dataframe1[[
'WindSpeed','SeaLevelPressure',	'HourlyPrecip']].apply(pd.to_numeric)

				#	Pare	down	the	variables	in	the	Weather	dataset	to	just	the	columns	being	
used	by	the	model
				df_result	=	dataframe1[['AirportCode',	'Month',	'Day',	'Hour',	'WindSpeed',
	'SeaLevelPressure',	'HourlyPrecip']]
				
				#	Return	value	must	be	of	a	sequence	of	pandas.DataFrame
				return	df_result

def	roundDown(x):
				z	=	int(math.floor(x/100.0))
				return	z	

11.	 Run	the	experiment.	Currently	it	should	appear	as	follows:

12.	 If	you	receive	an	error	in	the	Python	script	that	.to_numeric	does	not	exist,	go	back	and	verify
that	you	selected	the	proper	Python	version.

13.	 Right-click	the	first	output	port	of	the	Execute	Python	Script	module,	and	select	Visualize.

14.	 In	the	statistics,	verify	that	there	are	now	only	the	7	columns	we	are	interested	in,	and	that
WindSpeed,	SeaLevelPressure,	and	HourlyPrecip	are	now	all	Numeric	Feature	types	and	that
they	have	no	missing	values.

Task	6:	Join	the	Flight	and	Weather	datasets
1.	 With	both	datasets	ready,	we	want	to	join	them	together	so	that	we	can	associate	historical

flight	delays	with	the	weather	data	at	departure	time.

2.	 Drag	a	Join	Data	module	onto	the	design	surface,	beneath	and	centered	between	both
Execute	R	and	Python	Script	modules.	Connect	the	output	port	(1)	of	the	Execute	R	Script
module	to	input	port	(1)	of	the	Join	Data	module,	and	the	output	port	(1)	of	the	Execute
Python	Script	module	to	the	input	port	(2)	of	the	Join	Data	module.

3.	 In	the	Properties	panel	for	the	Join	Data	module,	relate	the	rows	of	data	between	the	two
sets	L	(the	flight	delays)	and	R	(the	weather).

4.	 Select	Launch	Column	selector	under	Join	key	columns	for	L.	Set	the	Join	key	columns
for	L	to	include	OriginAirportCode,	Month,	DayofMonth,	and	CRSDepHour,	and	select	the
check	box	in	the	bottom	right.

5.	 Select	Launch	Column	selector	under	Join	key	columns	for	R.	Set	the	join	key	columns
for	R	to	include	AirportCode,	Month,	Day,	and	Hour,	and	select	the	check	box	in	the	bottom
right.

6.	 Leave	the	Join	Type	at	Inner	Join,	and	uncheck	Keep	right	key	columns	in	joined	table	(so
that	we	do	not	include	the	redundant	values	of	AirportCode,	Month,	Day,	and	Hour).

7.	 Next,	drag	an	Edit	Metadata	module	onto	the	design	surface	below	the	Join	Data	module,
and	connect	its	input	port	to	the	output	port	of	the	Join	Data	module.	We	will	use	this	module
to	convert	the	fields	that	were	unbounded	String	feature	types,	to	the	enumeration	like

Categorical	feature.

8.	 On	the	Properties	panel	of	the	Edit	Metadata	module,	select	Launch	column	selector	and
set	the	Selected	columns	to	DayOfWeek,	Carrier,	DestAirportCode,	and	OriginAirportCode,
and	select	the	checkbox	in	the	bottom	right.

9.	 Set	the	Categorical	drop	down	to	Make	categorical.

10.	 Drag	a	Select	Columns	in	Dataset	module	onto	the	design	surface,	below	the	Edit
Metadata	module.	Connect	the	output	of	the	Edit	Metadata	module	to	the	input	of	the	Select
Columns	in	Dataset	module.

11.	 Launch	the	column	selector,	and	choose	Begin	With	All	Columns,	choose	Exclude	and	set
the	selected	columns	to	exclude:	OriginLatitude,	OriginLongitude,	DestLatitude,	and
DestLongitude.

12.	 Save	your	experiment.

13.	 Run	the	experiment	to	verify	everything	works	as	expected	and	when	completed,	Visualize
by	right-clicking	on	the	output	of	the	Select	Columns	in	Dataset	module.	You	will	see	the
joined	datasets	as	output.

14.	 The	model	should	now	look	like	the	following.

Task	7:	Train	the	model
AdventureWorks	Travel	wants	to	build	a	model	to	predict	if	a	departing	flight	will	have	a	15-minute	or
greater	delay.	In	the	historical	data	they	have	provided,	the	indicator	for	such	a	delay	is	found	within
the	DepDel15	(where	a	value	of	1	means	delay,	0	means	no	delay).	To	create	a	model	that	predicts
such	a	binary	outcome,	we	can	choose	from	the	various	Two-Class	modules	that	Azure	ML	offers.	For
our	purposes,	we	begin	with	a	Two-Class	Logistic	Regression.	This	type	of	classification	module	needs
to	be	first	trained	on	sample	data	that	includes	the	features	important	to	making	a	prediction	and
must	also	include	the	actual	historical	outcome	for	those	features.	The	typical	pattern	is	to	split	the
historical	data	so	a	portion	is	shown	to	the	model	for	training	purposes,	and	another	portion	is
reserved	to	test	just	how	well	the	trained	model	performs	against	examples	it	has	not	seen	before.

1.	 To	create	our	training	and	validation	datasets,	drag	a	Split	Data	module	beneath	Select
Columns	in	Dataset,	and	connect	the	output	of	the	Select	Columns	in	Dataset	module	to	the
input	of	the	Split	Data	module.

2.	 On	the	Properties	panel	for	the	Split	Data	module,	set	the	Fraction	of	rows	in	the	first
output	dataset	to	0.7	(so	70%	of	the	historical	data	will	flow	to	output	port	1).	Set	the
Random	seed	to	7634.

3.	 Next,	add	a	Train	Model	module	and	connect	it	to	output	1	of	the	Split	Data	module.

4.	 On	the	Properties	panel	for	the	Train	Model	module,	set	the	Selected	columns	to
DepDel15.

5.	 Drag	a	Two-Class	Logistic	Regression	module	above	and	to	the	left	of	the	Train	Model
module	and	connect	the	output	to	the	leftmost	input	of	the	Train	Model	module

6.	 Below	the	Train	Model	drop	a	Score	Model	module.	Connect	the	output	of	the	Train	Model
module	to	the	leftmost	input	port	of	the	Score	Model	and	connect	the	rightmost	output	of	the
Split	Data	module	to	the	rightmost	input	of	the	Score	Model.

7.	 Save	the	experiment.

8.	 Run	the	experiment.

9.	 When	the	experiment	is	finished	running	(which	takes	a	few	minutes),	right-click	on	the
output	port	of	the	Score	Model	module	and	select	Visualize	to	see	the	results	of	its
predictions.	You	should	have	a	total	of	13	columns.

10.	 If	you	scroll	to	the	right	so	that	you	can	see	the	last	two	columns,	observe	there	are	Scored
Labels	and	Scored	Probabilities	columns.	The	former	is	the	prediction	(1	for	predicting
delay,	0	for	predicting	no	delay)	and	the	latter	is	the	probability	of	the	prediction.	In	the
following	screenshot,	for	example,	the	last	row	shows	a	delay	predication	with	a	53.1%
probability.

11.	 While	this	view	enables	you	to	see	the	prediction	results	for	the	first	100	rows,	if	you	want	to
get	more	detailed	statistics	across	the	prediction	results	to	evaluate	your	model's
performance,	you	can	use	the	Evaluate	Model	module.

12.	 Drag	an	Evaluate	Model	module	on	to	the	design	surface	beneath	the	Score	Model	module.
Connect	the	output	of	the	Score	Model	module	to	the	leftmost	input	of	the	Evaluate	Model
module.

13.	 Run	the	experiment.

14.	 When	the	experiment	is	finished	running,	right-click	the	output	of	the	Evaluate	Model	module
and	select	Visualize.	In	this	dialog	box,	you	are	presented	with	various	ways	to	understand
how	your	model	is	performing	in	the	aggregate.	While	we	will	not	cover	how	to	interpret
these	results	in	detail,	we	can	examine	the	ROC	chart	that	tells	us	that	at	least	our	model
(the	blue	curve)	is	performing	better	than	random	(the	light	gray	straight	line	going	from	0,0
to	1,1)—which	is	a	good	start	for	our	first	model!

Task	8:	Operationalize	the	experiment

1.	 Now	that	we	have	a	functioning	model,	let	us	package	it	up	into	a	predictive	experiment	that
can	be	called	as	a	web	service.

2.	 In	the	command	bar	at	the	bottom,	select	Set	Up	Web	Service	and	then	select	Predictive
Web	Service	[Recommended].	(If	Predictive	Web	Service	is	grayed	out,	run	the
experiment	again.

3.	 A	copy	of	your	training	experiment	is	created,	and	a	new	tab	labeled	Predictive
Experiment	is	added,	which	contains	the	trained	model	wrapped	between	web	service	input
(e.g.	the	web	service	action	you	invoke	with	parameters)	and	web	service	output	modules
(e.g.,	how	the	result	of	scoring	the	parameters	are	returned).

4.	 We	will	make	some	adjustments	to	the	web	service	input	and	output	modules	to	control	the
parameters	we	require	and	the	results	we	return.

5.	 Move	the	Web	Service	Input	module	down,	so	it	is	to	the	right	of	the	Join	Data	module.
Connect	the	output	of	the	Web	service	input	module	to	input	of	the	Edit	Metadata	module.

6.	 Right-click	the	line	connecting	the	Join	Data	module	and	the	Edit	Metadata	module	and	select
Delete.

7.	 In	between	the	Join	Data	and	the	Edit	Metadata	modules,	drop	a	Select	Columns	in
Dataset	module.	Connect	the	Join	Data	module’s	output	to	the	Select	Columns	module’s
input,	and	the	Select	Columns	output	to	the	Edit	Metadata	module’s	input.

8.	 In	the	Properties	panel	for	the	Select	Columns	in	Dataset	module,	set	the	Select	columns	to
All	Columns,	and	select	Exclude.	Enter	columns	DepDel15,	OriginLatitude,
OriginLongitude,	DestLatitude,	and	DestLongitude.

9.	 This	configuration	will	update	the	web	service	metadata	so	that	these	columns	do	not	appear
as	required	input	parameters	for	the	web	service.

10.	 Select	the	Select	Columns	in	Dataset	module	that	comes	after	the	Metadata	Editor
module,	and	delete	it.

11.	 Connect	the	output	of	the	Edit	Metadata	module	directly	to	the	right	input	of	the	Score	Model
module.

12.	 As	we	removed	the	latitude	and	longitude	columns	from	the	dataset	to	remove	them	as	input
to	the	web	service,	we	have	to	add	them	back	in	before	we	return	the	result	so	that	the
results	can	be	easily	visualized	on	a	map.

13.	 To	add	these	fields	back,	begin	by	deleting	the	line	between	the	Score	Model	and	Web
service	output.

14.	 Drag	the	AirportCodeLocationLookupClean	dataset	on	to	the	design	surface,	positioning
it	below	and	to	the	right	of	the	Score	Model	module.

15.	 Add	a	Join	Data	module,	and	position	it	below	and	to	the	left	of	the
AirportCodeLocationLookupClean	module.

16.	 Connect	the	output	of	the	Score	Model	module	to	the	leftmost	input	of	the	Join	Data
module	and	the	output	of	the	AirportCodeLocationLookupClean	dataset	to	the	rightmost
input	of	the	Join	Data	module.

17.	 In	the	Properties	panel	for	the	Join	Data	module,	for	the	Join	key	columns	for	L	set	the
selected	columns	to	OriginAirportCode.	For	the	Join	key	columns	for	R,	set	the	Selected
columns	to	AIRPORT.	Uncheck	Keep	right	key	columns	in	joined	table.

18.	 Add	a	Select	Columns	in	Dataset	module	beneath	the	Join	Data	module.	Connect	the	Join
Data	output	to	the	input	of	the	Select	Columns	in	Dataset	module.

19.	 In	the	Property	panel,	begin	with	All	Columns,	and	set	the	Selected	columns	to	Exclude
the	columns:	AIRPORT_ID	and	DISPLAY_AIRPORT_NAME.

20.	 Add	an	Edit	Metadata	module.	Connect	the	output	of	the	Select	Columns	in	Dataset	module
to	the	input	of	the	Edit	Metadata	module.

21.	 In	the	Properties	panel	for	the	Metadata	Editor,	use	the	column	selector	to	set	the	Selected
columns	to	LATITUDE	and	LONGITUDE.	In	the	New	column	names	enter:	OriginLatitude,
OriginLongitude.

22.	 Connect	the	output	of	the	Edit	Metadata	to	the	input	of	the	web	service	output	module.

23.	 Run	the	experiment.

24.	 When	the	experiment	is	finished	running,	select	Deploy	Web	Service,	Deploy	Web
Service	[NEW]	Preview.

25.	 On	the	Deploy	experiment	page,	select	Create	New…	in	the	Price	Plan	drop	down,	and	enter
Dev	Test	as	the	Plan	Name.	Select	Standard	DevTest	(FREE)	under	Monthly	Plan	Options.

26.	 Select	Deploy.

27.	 When	the	deployment	is	complete,	you	will	be	taken	to	the	Web	Service	Quickstart	page.
Select	the	Consume	tab.

28.	 Leave	the	Consume	page	open	for	reference	during	Exercise	4,	Task	1.	At	that	point,	you
need	to	copy	the	Primary	Key	and	Batch	Requests	Uri	(omitting	the	querystring	–	“?api-
version=2.0

Exercise	2:	Setup	Azure	Data	Factory
Duration:	20	mins

Synopsis:	In	this	exercise,	attendees	will	create	a	baseline	environment	for	Azure	Data	Factory
development	for	further	operationalization	of	data	movement	and	processing.	You	will	create	a	Data
Factory	service,	and	then	install	the	Integration	Runtime	which	is	the	agent	that	facilitates	data
movement	from	on-premises	to	Microsoft	Azure.

Task	1:	Connect	to	the	Lab	VM
1.	 NOTE:	If	you	are	already,	connected	to	your	Lab	VM,	skip	to	Task	2.

2.	 From	the	left	side	menu	in	the	Azure	portal,	click	on	Resource	groups,	then	enter	your
resource	group	name	into	the	filter	box,	and	select	it	from	the	list.

3.	 Next,	select	your	lab	virtual	machine	from	the	list.

Setup	Azure	Data	Factory

4.	 On	your	Lab	VM	blade,	select	Connect	from	the	top	menu.

5.	 Download	and	open	the	RDP	file.

6.	 Select	Connect,	and	enter	the	following	credentials:

User	name:	demouser
Password:	Password.1!!

Task	2:	Download	and	stage	data	to	be	processed
1.	 Once	you	have	logged	into	the	Lab	VM,	open	a	web	browser.	A	shortcut	for	Chrome	is	on	the

desktop.

2.	 Download	the	AdventureWorks	sample	data	from	http://bit.ly/2zi4Sqa.

3.	 Extract	it	to	a	new	folder	called	C:\Data.

Task	3:	Install	and	configure	Azure	Data	Factory	Integration	Runtime	on
the	Lab	VM

1.	 To	download	the	latest	version	of	Azure	Data	Factory	Integration	Runtime,	go	to
https://www.microsoft.com/en-us/download/details.aspx?id=39717

2.	 Select	Download,	then	choose	the	download	you	want	from	the	next	screen.

3.	 Run	the	installer,	once	downloaded.

4.	 When	you	see	the	following	screen,	select	Next.

5.	 Check	the	box	to	accept	the	terms	and	select	Next.

6.	 Accept	the	default	Destination	Folder,	and	select	Next.

7.	 Select	Install	to	complete	the	installation.

8.	 Select	Finish	once	the	installation	has	completed.

9.	 After	clicking	Finish,	the	following	screen	will	appear.	Keep	it	open	for	now.	We	will	come	back
to	this	screen	once	we	have	provisioned	the	Data	Factory	in	Azure,	and	obtain	the	gateway
key	so	we	can	connect	Data	Factory	to	this	“on-premises”	server

Task	4:	Create	an	Azure	Data	Factory
1.	 Launch	a	new	browser	window,	and	navigate	to	the	Azure	portal	(https://portal.azure.com).

Once	prompted,	log	in	with	your	Microsoft	Azure	credentials.	If	prompted,	choose	whether
your	account	is	an	organization	account	or	a	Microsoft	account.	This	will	be	based	on	which
account	was	used	to	provision	your	Azure	subscription	that	is	being	used	for	this	lab.

Note:	You	may	need	to	launch	an	InPrivate/Incognito	session	in	your	browser	if	you
have	multiple	Microsoft	accounts.

2.	 From	the	top	left	corner	of	the	Azure	portal,	select	+	Create	a	resource,	and	select	Data	+
Analytics,	then	select	Data	Factory.

3.	 On	the	New	data	factory	blade,	enter	the	following:
Name:	Provide	a	name,	such	as	bigdata-adf
Subscription:	Select	your	subscription
Resource	Group:	Choose	Use	existing,	and	select	the	Resource	Group	you	created
when	deploying	the	lab	prerequisites
Version:	Select	V1
Location:	Select	one	of	the	available	locations	from	the	list	nearest	the	one	used	by
your	Resource	Group
Select	Create

4.	 The	ADF	deployment	will	take	several	minutes.

5.	 Once	the	deployment	is	completed,	you	will	receive	a	notification	that	it	succeeded.

6.	 Select	the	Go	to	resource	button,	to	navigate	to	the	newly	created	Data	Factory.

7.	 On	the	Data	Factory	blade,	select	Author	and	Deploy	under	Actions.

8.	 Next,	select	…More,	then	New	integration	runtime	(gateway).

9.	 Enter	an	Integration	runtime	name,	such	as	bigdatagateway-[initials],	and	select	OK.

10.	 On	the	Configure	screen,	copy	the	key1	value	by	selecting	the	Copy	button,	then	select	OK.

11.	 Don’t	close	the	current	screen	or	browser	session.

12.	 Go	back	to	the	Remote	Deskop	session	of	the	Lab	VM.

13.	 Paste	the	key1	value	into	the	box	in	the	middle	of	the	Microsoft	Integration	Runtime
Configuration	Manager	screen.

14.	 Select	Register.

15.	 It	will	take	a	minute	or	two	to	register.	If	it	takes	more	than	a	couple	of	minutes,	and	the
screen	does	not	respond	or	returns	an	error	message,	close	the	screen	by	clicking	the
Cancel	button.

16.	 The	next	screen	will	be	New	Integration	Runtime	(Self-hosted)	Node.	Select	Finish.

17.	 You	will	then	get	a	screen	with	a	confirmation	message.

18.	 Select	the	Launch	Configuration	Manager	button	to	view	the	connection	details.

19.	 You	can	now	return	to	the	Azure	portal,	and	click	OK	twice	to	complete	the	Integration
Runtime	setup.

20.	 You	can	view	the	Integration	Runtime	by	expanding	Integration	runtimes	on	the	Author	and
Deploy	blade.

21.	 Close	the	Author	and	Deploy	blade,	to	return	to	the	the	Azure	Data	Factory	blade.	Leave	this
open	for	the	next	exercise.

Exercise	3:	Develop	a	data	factory	pipeline	for	data
movement
Duration:	20	mins

Synopsis:	In	this	exercise,	you	will	create	an	Azure	Data	Factory	pipeline	to	copy	data	(.CSV	file)
from	an	on-premises	server	(Lab	VM)	to	Azure	Blob	Storage.	The	goal	of	the	exercise	is	to
demonstrate	data	movement	from	an	on-premises	location	to	Azure	Storage	(via	the	Integration
Runtime).	You	will	see	how	assets	are	created,	deployed,	executed,	and	monitored.

Task	1:	Create	copy	pipeline	using	the	Copy	Data	Wizard
1.	 On	your	Azure	Data	Factory	blade	in	the	Azure	portal,	select	Copy	Data	(PREVIEW),	under

Actions.

Develop	a	data	factory
pipeline	for	data	movement

2.	 This	will	launch	a	new	browser	window.	Log	in	with	the	same	credentials	you	used	to	create
the	Data	Factory.

3.	 In	the	new	browser	window,	enter	the	following:

Task	name:	Enter	“CopyOnPrem2AzurePipeline”
Task	description:	(Optional)	Enter	a	description,	such	as	“This	pipeline	copies
timesliced	CSV	files	from	on-premises	virtual	machine	C:\FlightsAndWeather	to	Azure
Blob	Storage	as	a	continuous	job.”
Task	cadence	(or)	Task	schedule:	Select	Run	regularly	on	schedule.
Recurring	pattern:	Select	Monthly,	and	every	1	month.
Start	date	time	(UTC):	Set	to	03/01/2017	12:00	am
End	date	time	(UTC):	Set	to	12/31/2099	11:59	pm
Select	Next

4.	 On	the	Source	screen,	select	File	System,	then	select	Next.

5.	 From	the	Specify	File	server	share	connection	screen,	enter	the	following:

Connection	name:	OnPremServer
Integration	Runtime/Gateway:	Select	the	Integration	runtime	created	previously	in

this	exercise	(this	value	should	already	be	populated)
Path:	Enter	C:\Data
Credential	encryption:	Select	By	web	browser
User	name:	Enter	demouser
Password:	Enter	Password.1!!
Select	Next

6.	 On	the	Choose	the	input	file	or	folder	screen,	select	the	folder	FlightsAndWeather,	and
select	Choose.

7.	 On	the	next	screen,	check	the	Copy	files	recursively	check	box,	and	select	Next.

8.	 On	the	File	format	settings	page,	leave	the	default	settings,	and	select	Next.

9.	 On	the	Destination	screen,	select	Azure	Blob	Storage,	and	select	Next.

10.	 On	the	Specify	the	Azure	Blob	storage	account	screen,	enter	the	following:
Connection	name:	BlobStorageOutput
Account	selection	method:	Leave	as	From	Azure	subscriptions
Azure	Subscription:	Select	your	subscription
Storage	account	name:	Select	<YOUR_APP_NAME>sparkstorage.	Make	sure	you
select	the	storage	account	with	the	sparkstorage	suffix,	or	you	will	have	issues	with
subsequent	exercises.	This	ensures	data	will	be	copied	to	the	storage	account	that
the	Spark	cluster	users	for	its	data	files.

11.	 Before	selecting	Next,	please	ensure	you	have	selected	the	proper	sparkstorage	account.
Finally,	select	Next.

12.	 From	the	Choose	the	output	file	or	folder	tab,	enter	the	following:

Folder	path:	Enter	sparkcontainer/FlightsAndWeather/{Year}/{Month}/
Filename:	Enter	FlightsAndWeather.csv
Year:	Select	yyyy	from	the	drop	down
Month:	Leave	as	MM
Select	Next.

13.	 On	the	File	format	settings	screen,	check	the	Add	header	to	file	checkbox,	then	select
Next.

13.	 On	the	Settings	screen,	select	Skip	all	incompatible	rows	under	Actions,	then	select	Next.

14.	 Review	settings	on	the	Summary	tab.

15.	 Scroll	down	on	the	summary	page	until	you	see	the	Copy	Settings	section.	Select	Edit	next
to	Copy	Settings.

16.	 Change	the	following	Copy	settings
Concurrency:	Set	to	10
Execution	priority	order:	Change	to	OldestFirst
Select	Save

17.	 After	saving	the	Copy	settings,	select	Next	on	the	Summary	tab.

18.	 On	the	Deployment	screen	you	will	see	a	message	that	the	deployment	in	is	progress,	and
after	a	minute	or	two	that	the	deployment	completed.

19.	 Select	the	Click	here	to	monitor	copy	pipeline	link	at	the	bottom	of	the	Deployment
screen.

20.	 From	the	Data	Factory	Resource	Explorer,	you	should	see	the	pipeline	activity	status	Ready.
This	indicates	the	CSV	files	are	successfully	copied	from	your	VM	to	your	Azure	Blob	Storage
location.

4.	 You	may	need	to	adjust	the	Start	time	in	the	window,	as	follows,	and	then	select	Apply.

Exercise	4:	Operationalize	ML	scoring	with	Azure	ML
and	Data	Factory
Duration:	20	mins

Synopsis:	In	this	exercise,	you	will	extend	the	Data	Factory	to	operationalize	the	scoring	of	data
using	the	previously	created	Azure	Machine	Learning	(ML)	model.

Task	1:	Create	Azure	ML	Linked	Service
1.	 Return	to	the	Azure	Data	Factory	blade	in	the	Azure	portal

2.	 Select	Author	and	Deploy	below	Actions.

Operationalize	ML	Scoring
with	Azure	ML	and	Data
Factory

3.	 On	the	Author	and	Deploy	blade,	select	…More,	the	select	New	Compute.

4.	 Select	Azure	ML	from	the	New	Compute	list.

5.	 In	the	new	window,	replace	the	contents	of	the	file	with	the	following	JSON.

Back	in	Exercise	1,	Task	9,	you	left	your	ML	Web	Service’s	Consume	page	open.
Return	to	that	page,	and	copy	and	paste	the	following	values	into	the	JSON	below.
The	value	of	mlEndpoint	below	is	your	web	service’s	Batch	Request	URL,
remember	to	**remove	the	query	string	(e.g.,	“?api_version=2.0”).
apiKey	is	the	Primary	Key	of	your	web	service.
Your	tenant	string	should	be	populated	automatically.
Delete	the	other	optional	settings	(updateResourceEndpoint,	servicePrincipalId,
servicePrincipalKey).

{
"name":	"AzureMLLinkedService",
"properties":	{
				"type":	"AzureML",
				"description":	"",
				"typeProperties":	{
								"mlEndpoint":	"<Specify	the	batch	scoring	URL>",
								"apiKey":	"<Specify	the	published	workspace	model’s	API	key>",
								"tenant":	"<Specify	your	tenant	string>"
																								}
																}
}

6.	 Select	Deploy.

Task	2:	Create	Azure	ML	input	dataset
1.	 Still	on	the	Author	and	Deploy	blade,	select	…More	again.

2.	 To	create	a	new	dataset	that	will	be	copied	into	Azure	Blob	storage,	select	New	dataset
from	the	top.

3.	 Select	Azure	Blob	storage	from	the	list	of	available	datasets.

4.	 Replace	the	JSON	text	in	the	draft	window	with	following	JSON.

{
				"name":	"PartitionedBlobInput",
				"properties":	{
								"published":	false,
								"type":	"AzureBlob",
								"linkedServiceName":	"BlobStorageOutput",
								"typeProperties":	{
												"fileName":	"FlightsAndWeather.csv",
												"folderPath":	"sparkcontainer/FlightsAndWeather/{Year}/{Month}/",
												"format":	{
																"type":	"TextFormat"
												},
												"partitionedBy":	[
																{
																				"name":	"Year",
																				"value":	{
																								"type":	"DateTime",
																								"date":	"SliceStart",
																								"format":	"yyyy"
																				}

																},
																{
																				"name":	"Month",
																				"value":	{
																								"type":	"DateTime",
																								"date":	"SliceStart",
																								"format":	"MM"
																				}
																}
]
								},
								"availability":	{
												"frequency":	"Month",
												"interval":	1
								},
								"external":	true,
								"policy":	{}
				}
}

5.	 Select	Deploy.

Task	3:	Create	Azure	ML	scored	dataset
1.	 Select	…More	again,	and	select	New	dataset.

2.	 Select	Azure	Blob	storage	from	the	list	of	available	datasets.

3.	 Replace	the	JSON	text	in	the	draft	window	with	following	JSON.

{
				"name":	"ScoredBlobOutput",
				"properties":	{
								"published":	false,
								"type":	"AzureBlob",
								"linkedServiceName":	"BlobStorageOutput",
								"typeProperties":	{
												"fileName":	"Scored_FlightsAndWeather{Year}{Month}.csv",
												"folderPath":	"sparkcontainer/ScoredFlightsAndWeather",
												"format":	{
																"type":	"TextFormat"
												},
												"partitionedBy":	[
																{
																				"name":	"Year",
																				"value":	{
																								"type":	"DateTime",
																								"date":	"SliceStart",
																								"format":	"yyyy"
																				}

																},
																{
																				"name":	"Month",
																				"value":	{
																								"type":	"DateTime",
																								"date":	"SliceStart",
																								"format":	"MM"
																				}
																}
]
								},
								"availability":	{
												"frequency":	"Month",
												"interval":	1
								}
				}
}

4.	 Select	Deploy.

Task	4:	Create	Azure	ML	predictive	pipeline
1.	 Select	…More	again,	and	select	New	pipeline.

2.	 Replace	the	JSON	text	in	the	draft	window	with	following	JSON.

{
				"name":	"MLPredictivePipeline",
				"properties":	{
								"description":	"Use	AzureML	model",
								"activities":	[
												{
																"type":	"AzureMLBatchExecution",
																"typeProperties":	{
																				"webServiceInput":	"PartitionedBlobInput",
																				"webServiceOutputs":	{
																								"output1":	"ScoredBlobOutput"
																				},
																				"webServiceInputs":	{},
																				"globalParameters":	{}
																},
																"inputs":	[
																				{
																								"name":	"PartitionedBlobInput"
																				}
],
																"outputs":	[
																				{
																								"name":	"ScoredBlobOutPut"
																				}
],
																"policy":	{
																				"timeout":	"02:00:00",
																				"concurrency":	10,
																				"retry":	1
																},
																"scheduler":	{

																				"frequency":	"Month",
																				"interval":	1
																},
																"name":	"MLActivity",
																"description":	"prediction	analysis	on	batch	input",
																"linkedServiceName":	"AzureMLLinkedService"
												}
],
								"start":	"2017-03-01T00:00:00Z",
								"end":	"2099-12-31T11:59:59Z",
								"isPaused":	false,
								"pipelineMode":	"Scheduled"
				}
}

3.	 Select	Deploy.

Task	5:	Monitor	pipeline	activities
1.	 Close	the	Author	and	Deploy	blade,	and	return	to	the	Data	Factory	overview.

2.	 Select	Monitor	&	Manage	under	Actions.

3.	 Once	again,	you	may	need	to	shift	the	start	time	in	order	to	see	the	items	in	progress	and
ready	states.

4.	 Close	the	Monitor	&	Manage	browser	tab.

Exercise	5:	Summarize	data	using	HDInsight	Spark
Duration:	20	mins

Synopsis:	In	this	exercise,	you	will	prepare	a	summary	of	flight	delay	data	in	HDFS	using	Spark	SQL.

Task	1:	Install	pandas	on	the	HDInsight	cluster
In	this	task,	you	will	upgrade	the	version	of	panda	on	the	HDInsight	cluster,	to	ensure	the	Jupyter
notebook’s	autovixwidget	has	the	necessary	‘api’	module	installed.

1.	 In	the	Azure	portal,	navigate	to	your	HDInsight	cluster,	and	from	the	Overview	blade	select
Secure	Shell	(SSH).

2.	 On	the	SSH	+	Cluster	login	blade,	select	your	cluster	from	the	Hostname	drop	down,	then
select	the	copy	button	next	to	the	SSH	command.

Summarize	data	using
HDInsight	Spark

3.	 On	your	Lab	VM,	open	a	new	Git	Bash	terminal	window.

4.	 At	the	prompt,	paste	the	SSH	command	you	copied	from	your	HDInsight	SSH	+	Cluster	login
blade.

5.	 Enter	yes,	if	prompted	about	continuing,	and	enter	the	following	password	for	the
sshuser:

Abc!1234567890
6.	 At	the	sshuser	prompt	within	the	bash	terminal,	enter	the	following	command	to	install

pandas	on	the	cluster:

sudo	-HE	/usr/bin/anaconda/bin/conda	install	pandas

Task	2:	Summarize	delays	by	airport
1.	 In	the	Azure	portal	(https://portal.azure.com),	navigate	to	the	blade	for	your	Spark	cluster.	Do

this	by	going	to	the	resource	group	you	created	during	the	lab	setup,	using	the	Resource
Group	link	in	the	left-hand	menu.	Once	you	select	your	resource	group,	you	will	see	a	list	of
the	resources	within	that	group,	including	your	Spark	cluster.	Select	your	Spark	cluster.

2.	 In	the	Quick	links	section,	select	Cluster	dashboard.

3.	 From	the	Cluster	dashboards	blade,	select	Jupyter	Notebook.

4.	 Juptyer	Notebook	will	open	in	a	new	browser	window.	Log	in	with	the	following	credentials:

User	name:	demouser
Password:	Password.1!!
Note:	If	you	get	a	403	–	Forbidden:	Access	is	denied	error,	try	to	open	the	jupyter	URL
in	a	private	or	incognito	browser	window.	You	can	also	clear	the	browser	cache.

5.	 On	the	Jupyter	Notebook	screen,	select	New,	and	Spark.	This	will	open	a	Jupyter	notebook	in
a	new	browser	tab.

6.	 Copy	the	text	below,	and	paste	it	into	the	first	cell	in	the	Jupyter	notebook.	This	will	read
the	data	from	our	Scored_FlightsAndWeather.csv	file,	and	output	it	into	a	Hive	table	named
“FlightDelays.”

import	spark.sqlContext.implicits._

val	flightDelayTextLines	=	sc.textFile("/ScoredFlightsAndWeather/*.csv")

case	class	AirportFlightDelays(OriginAirportCode:String,OriginLatLong:String,Mo
nth:Integer,Day:Integer,Hour:Integer,Carrier:String,DelayPredicted:Integer,Dela
yProbability:Double)

val	flightDelayRowsWithoutHeader	=	flightDelayTextLines.map(s	=>	s.split(",")).
filter(line	=>	line(0)	!=	"OriginAirportCode")

val	resultDataFrame	=	flightDelayRowsWithoutHeader.map(
				s	=>	AirportFlightDelays(
								s(0),	//Airport	code
								s(13)	+	","	+	s(14),	//Lat,Long
								s(1).toInt,	//Month
								s(2).toInt,	//Day
								s(3).toInt,	//Hour
								s(5),	//Carrier
								s(11).toInt,	//DelayPredicted
								s(12).toDouble	//DelayProbability
)
).toDF()

resultDataFrame.write.mode("overwrite").saveAsTable("FlightDelays")

7.	 The	notebook	should	now	look	like	the	image	below.

8.	 Select	the	Run	cell	button	on	the	toolbar.

9.	 You	will	see	in	asterisk	appear	between	the	brackets	in	front	of	the	cell.

10.	 This	will	change	to	a	number	once	the	command	is	complete.

11.	 Below	the	cell,	you	will	see	the	output	from	executing	the	command.

12.	 Now,	we	can	query	the	hive	table	which	was	created	by	the	previous	command.	Paste	the
text	below	into	the	empty	cell	at	the	bottom	on	the	notebook,	and	select	the	Run	cell
button	for	that	cell.

%%sql

SELECT	*	FROM	FlightDelays

13.	 Once	completed	you	will	see	the	results	displayed	as	a	table.

14.	 Next,	you	will	create	a	table	that	summarizes	the	flight	delays	data.	Instead	of	containing
one	row	per	flight,	this	new	summary	table	will	contain	one	row	per	origin	airport	at	a	given
hour,	along	with	a	count	of	the	quantity	of	anticipated	delays.	In	a	new	cell	below	the	results
of	our	previous	cell,	paste	the	following	text,	and	select	the	Run	cell	button	from	the
toolbar.

%%sql

SELECT		OriginAirportCode,	OriginLatLong,	Month,	Day,	Hour,	Sum(DelayPredicted)
	NumDelays,	Avg(DelayProbability)	AvgDelayProbability	
FROM	FlightDelays	
WHERE	Month	=	4
GROUP	BY	OriginAirportCode,	OriginLatLong,	Month,	Day,	Hour
Having	Sum(DelayPredicted)	>	1

15.	 Execution	of	this	cell	should	return	a	results	table	like	the	following.

16.	 Since	the	summary	data	looks	good,	the	final	step	is	to	save	this	summary	calculation	as	a
table,	which	we	can	later	query	using	Power	BI	(in	the	next	exercise).

17.	 To	accomplish	this,	paste	the	text	below	into	a	new	cell,	and	select	the	Run	cell	button
from	the	toolbar.

val	summary	=	spark.sqlContext.sql("SELECT		OriginAirportCode,	OriginLatLong,	M
onth,	Day,	Hour,	Sum(DelayPredicted)	NumDelays,	Avg(DelayProbability)	AvgDelayP
robability	FROM	FlightDelays	WHERE	Month	=	4	GROUP	BY	OriginAirportCode,	Origin
LatLong,	Month,	Day,	Hour	Having	Sum(DelayPredicted)	>	1")
summary.write.mode("overwrite").saveAsTable("FlightDelaysSummary")

18.	 To	verify	the	table	was	successfully	created,	go	to	another	new	cell,	and	enter	the
following	query.

%%sql

SELECT	*	FROM	FlightDelaysSummary

19.	 Select	the	Run	cell	button	on	the	toolbar.

20.	 You	should	see	a	results	table	similar	to	the	following.

21.	You	can	also	select	Pie,	Scatter,	Line,	Area,	and	Bar	chart	visualizations	of	the	dataset.

Exercise	6:	Visualizing	in	Power	BI	Desktop
Duration:	20	mins

Synopsis:	In	this	exercise,	you	will	create	a	Power	BI	Report	to	visualize	the	data	in	HDInsight	Spark.

Task	1:	Connect	to	the	Lab	VM
1.	 NOTE:	If	you	are	already,	connected	to	your	Lab	VM,	skip	to	Task	2.

2.	 From	the	left	side	menu	in	the	Azure	portal,	click	on	Resource	groups,	then	enter	your
resource	group	name	into	the	filter	box,	and	select	it	from	the	list.

3.	 Next,	select	your	lab	virtual	machine	from	the	list.

Visualizing	in	PowerBI
Desktop

4.	 On	your	Lab	VM	blade,	select	Connect	from	the	top	menu.

5.	 Download	and	open	the	RDP	file.

6.	 Select	Connect,	and	enter	the	following	credentials:

User	name:	demouser
Password:	Password.1!!

Task	2:	Connect	to	HDInsight	Spark	using	Power	BI	Desktop
1.	 On	your	Lab	VM,	launch	Power	BI	Desktop	by	double-clicking	on	the	desktop	shortcut

you	created	in	the	pre-lab	setup.

2.	 When	Power	BI	Desktop	opens,	you	will	need	to	enter	your	personal	information,	or	Sign
in	if	you	already	have	an	account.

3.	 Select	Get	data	on	the	screen	that	is	displayed	next.

4.	 Select	Azure	from	the	left,	and	select	Azure	HDInsight	Spark	(Beta)	from	the	list	of
available	data	sources.

5.	 Select	Connect.

6.	 You	will	receive	a	prompt	warning	you	that	the	Spark	connector	is	still	in	preview.	Select
Continue.

7.	 On	the	next	screen,	you	will	be	prompted	for	your	HDInsight	Spark	cluster	URL.

8.	 To	find	your	Spark	cluster	URL,	go	into	the	Azure	portal,	and	navigate	to	your	Spark
cluster,	as	you	did	in	Exercise	5,	Task	1.	Once	on	the	cluster	blade,	look	for	the	URL	under
the	Essentials	section

9.	 Copy	the	URL,	and	paste	it	into	the	Server	box	on	the	Power	BI	Azure	HDInsight	Spark
dialog.

10.	 Select	DirectQuery	for	the	Data	Connectivity	mode,	and	select	OK.

11.	 Enter	your	credentials	on	the	next	screen	as	follows.

User	name:	demouser
Password:	Password.1!!

12.	 Select	Connect.

13.	 In	the	Navigator	dialog,	check	the	box	next	to	flightdelayssummary,	and	select	Load.

14.	 It	will	take	several	minutes	for	the	data	to	load	into	the	Power	BI	Desktop	client.

Task	3:	Create	Power	BI	report
1.	 Once	the	data	finishes	loading,	you	will	see	the	fields	appear	on	the	far	right	of	the	Power	BI

Desktop	client	window.

2.	 From	the	Visualizations	area,	next	to	Fields,	select	the	Globe	icon	to	add	a	Map	visualization
to	the	report	design	surface.

3.	 With	the	Map	visualization	still	selected,	drag	the	OriginLatLong	field	to	the	Location	field
under	Visualizations.

4.	 Next,	drag	the	NumDelays	field	to	the	Size	field	under	Visualizations.

5.	 You	should	now	see	a	map	that	looks	similar	to	the	following	(resize	and	zoom	on	your	map	if
necessary):

6.	 Unselect	the	Map	visualization	by	clicking	on	the	white	space	next	to	the	map	in	the	report
area.

7.	 From	the	Visualizations	area,	select	the	Stacked	Column	Chart	icon	to	add	a	bar	chart
visual	to	the	report’s	design	surface.

8.	 With	the	Stacked	Column	Chart	still	selected,	drag	the	Day	field	and	drop	it	into	the	Axis
field	located	under	Visualizations.

9.	 Next,	drag	the	AvgDelayProbability	field	over,	and	drop	it	into	the	Value	field.

10.	 Grab	the	corner	of	the	new	Stacked	Column	Chart	visual	on	the	report	design	surface,	and
drag	it	out	to	make	it	as	wide	as	the	bottom	of	your	report	design	surface.	It	should	look
something	like	the	following.

11.	 Unselect	the	Stacked	Column	Chart	visual	by	clicking	on	the	white	space	next	to	the	map
on	the	design	surface.

12.	 From	the	Visualizations	area,	select	the	Treemap	icon	to	add	this	visualization	to	the	report.

13.	 With	the	Treemap	visualization	selected,	drag	the	OriginAirportCode	field	into	the	Group
field	under	Visualizations.

14.	 Next,	drag	the	NumDelays	field	over,	and	drop	it	into	the	Values	field.

15.	 Grab	the	corner	of	the	Treemap	visual	on	the	report	design	surface,	and	expand	it	to	fill	the
area	between	the	map	and	the	right	edge	of	the	design	surface.	The	report	should	now	look
similar	to	the	following.

16.	 You	can	cross	filter	any	of	the	visualizations	on	the	report	by	clicking	on	one	of	the	other
visuals	within	the	report,	as	shown	below.	(This	may	take	a	few	seconds	to	change,	as	the
data	is	loaded.)

17.	 You	can	save	the	report,	by	clicking	Save	from	the	File	menu,	and	entering	a	name	and
location	for	the	file.

Exercise	7:	Deploy	Intelligent	Web	App
Duration:	20	mins

Synopsis:	In	this	exercise,	you	will	deploy	an	intelligent	web	application	to	Azure	from	GitHub.	This
application	leverages	the	operationalized	machine	learning	model	that	was	deployed	in	Exercise	1	to
bring	action-oriented	insight	to	an	already	existing	business	process.

Task	1:	Deploy	web	app	from	GitHub
1.	 Navigate	to	https://github.com/ZoinerTejada/mcw-big-data-and-

visualization/blob/master/AdventureWorksTravel/README.md	in	your	browser	of	choice,	but
where	you	are	already	authenticated	to	the	Azure	portal.

2.	 Read	through	the	README	information	on	the	GitHub	page	and	capture	the	required
parameters.

3.	 Click	the	Deploy	to	Azure	button.

4.	 On	the	following	page,	ensure	the	fields	are	populated	correctly.

Ensure	the	correct	Directory	and	Subscription	are	selected.
Select	the	Resource	Group	that	you	have	been	using	throughout	this	lab.
Either	keep	the	default	Site	name,	or	provide	one	that	is	globally	unique,	and	then
choose	a	Site	Location.
Finally,	enter	the	ML	API	and	Weather	API	information.

Recall	that	you	recorded	the	ML	API	information	back	in	Exercise	1,	Task	9.
1.	 This	information	can	be	obtained	on	your	Machine	Learning	web

service	page	(https://services.azureml.net,	then	go	to	the	Consume
tab.

2.	 The	Primary	Key	listed	is	your	ML	API	key
3.	 In	the	Request-Response	URL,	the	GUID	after	subscriptions/	is

your	ML	Workspace	Id
4.	 In	the	Request-Response	URL,	the	GUID	after	services/	is	your	ML

Service	Id

Deploy	Intelligent	Web	App

Also,	recall	that	you	obtained	the	Weather	API	key	back	in	the	Task	3	of	the
prerequisite	steps	for	the	lab.	Insert	that	key	into	the	Weather	Api	Key	field.

5.	 Select	Next,	and	on	the	following	screen,	select	Deploy.

6.	 The	page	should	begin	deploying	your	application	while	showing	you	a	status	of	what	is
currently	happening.

NOTE:	If	you	run	into	errors	during	the	deployment	that	indicate	a	bad	request	or	unauthorized,
verify	that	the	user	you	are	logged	into	the	portal	with	an	account	that	is	either	a	Service
Administrator	or	a	Co-Administrator.	You	won’t	have	permissions	to	deploy	the	website	otherwise.

7.	 After	a	short	time,	the	deployment	will	complete,	and	you	will	be	presented	with	a	link	to
your	newly	deployed	web	application.	CTRL+Click	to	open	it	in	a	new	tab.

8.	 Try	a	few	different	combinations	of	origin,	destination,	date,	and	time	in	the	application.	The
information	you	are	shown	is	the	result	of	both	the	ML	API	you	published,	as	well	as
information	retrieved	from	the	Weather	Underground	API.

9.	 Congratulations!	You	have	built	and	deployed	an	intelligent	system	to	Azure.

Exercise	8:	Cleanup	After	the	hands-on	workshop
Duration:	10	mins

Synopsis:	In	this	exercise,	attendees	will	deprovision	any	Azure	resources	that	were	created	in
support	of	the	workshop.

You	should	follow	all	steps	provided	after	attending	the	Hands-on	workshop.

Task	1:	Delete	resource	group
1.	 Using	the	Azure	portal,	navigate	to	the	Resource	group	you	used	throughout	this	hands-on

lab	by	selecting	Resource	groups	in	the	left	menu.

2.	 Search	for	the	name	of	your	research	group	and	select	it	from	the	list.

3.	 Select	Delete	in	the	command	bar	and	confirm	the	deletion	by	re-typing	the	Resource
group	name	and	selecting	Delete.

Task	2:	Delete	the	Machine	Learning	Workspace
1.	 From	the	Azure	Portal,	select	Machine	Learning	Studio	workspaces.

2.	 In	the	list	of	Workspaces,	select	the	workspace	you	created.

3.	 Click	Delete	in	the	command	bar	at	the	bottom.

4.	 When	prompted	to	confirm	the	deletion,	click	Yes.

Cleanup

